Design & Health Prognosis of Composite Structural Durability

John Bausano, Steven Phifer, Michael Hayes, Scott Case & Jack Lesko Materials Response Group Department of Engineering Science & Mechanics Blacksburg, VA 24061

Where are We Working Now?

Where Would We Like to Be?

Load & Resistance Factor Design (LRFD)

AASHTO (1998) LRFD based design

Design Guide Approach

How Does the Resistance Change?

"Emphasis on Combined Environments" CERF/MDA Durability Gap Analysis

Developing Guidance on ϕ

$$\phi = \left(\frac{\mu_R}{R_n}\right) exp\left(-\alpha_R \beta V_R\right) \quad \text{where} \quad \beta = \frac{\mu_G}{\sigma_G} \quad \text{and} \quad G = R - Q$$

(FORM) – Hasofer & Lind (1974)

Estimating Remaining Strength & Stiffness

FRP composites durability is best described by nonlinear cumulative damage approaches where residual strength and stiffness are tracked during life

Degradation Processes

Simulation Approach

$V_f = 52\%$ E-glass/Vinyl Ester Owens Corning Fabric •Dow Derakane - 640-900 Pultruded @ Dow Freeport, TX

Material

 $[csm/0/90/csm/\pm 45/csm]_s$

Nexus 110-039, 0.18mm

xCDM 1810 = xx mm @ 55vol% in the C and D layers and @ 28vol% in the M layer

xDBM 1710 = yy mm @ 55vol% in the C and D layers and @ 28vol% in the M layer

CSM M8643 CSM, Mat 1.0 oz = 0.48 mm @ 28 Vol% glass

xDBM 1710

xCDM 1810

Nexus 110-039

Material Variation: Fatigue

Laminate Modulus Reduction

Stiffness Reduction: a Variations

Remaining Strength & LRFD Preliminary Trials

Fatigue Validation

Simulated Case: Fatigue

Validation: Coupon Level

- <u>Experimental</u>: 15 Samples fatigued at 35% ULT to 18750 cycles or to failure – Survivors' residual strength measured
- Simulation: 500 trials to 18750 cycles or (μ-2*σ)

Residual Strength Distribution		
Weibull Parameter	Experimental	Simulated
α	10.9	5.8
β (psi)	23.6 E 3	23.9 E 3

 $\beta = N_0$

Probability of failure during fatigue before the sample reached 18750 cycles		
Experimental	Simulated	
23%	23%	

MRG Qualifications

- Members to the International Editorial Boards of the ASCE Journal of Composite for Construction & the International Journal of Fatigue
- NSF CAREER Award 1997
- Textbook: Damage Tolerance and Durability of Material Systems
- MRLife: Licensed code for the assessment of composite durability
- Sponsored Research: \$8 million in Corporate,
 State and Federal grants (over 7 years)
- Design Manual Development for composite structures

MRG Facilities

Experimental characterization & validation including combined hygrothermal-mechanical-loading facilities

 Analysis & modeling at multiple length and time scales

Visualization & immersive environments

